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Abstract. We examine how accurately the general HZV couplings, with V = Z, γ, may be determined
by studying e+e− → Hff̄ processes at future e+e− linear colliders. By using the optimal-observable
method, which makes use of all available experimental information, we find out which combinations of
the various HZV coupling terms may be constrained most efficiently with high luminosity. We also assess
the benefits of measuring the tau-lepton helicities, identifying the bottom-hadron charges, polarizing the
electron beam and running at two different collider energies. The HZZ couplings are generally found to
be well constrained, even without these options, while the HZγ couplings are not. The constraints on the
latter may be significantly improved by beam polarization.

1 Introduction

The standard model (SM) of elementary-particle physics
predicts a neutral scalar Higgs boson H as a remnant of
the spontaneous breaking of its gauge symmetry. This par-
ticle is the only undiscovered ingredient of the SM so far.
The experiments at the CERN Large Electron-Positron
Collider (LEP2) were able to place lower bounds on its
mass in the range 91.0–98.8 GeV at the 95% confidence
level (CL) [1]. The search for the Higgs boson is a prime
target of future colliders. Once the Higgs boson is found,
its properties and interactions with other particles may be
studied in detail with e+e− linear colliders. If the Higgs
boson is light, the bremsstrahlung process e+e− → HZ
is expected to be the most promising process to study its
properties and interactions and to search for deviations
from the SM predictions.

The purpose of this paper is to study systematically
the sensitivities to general non-standard couplings among
the Higgs boson, the Z boson and a neutral vector boson
V (V = Z, γ). Since the Z boson has spin one, we take
into account the angular distributions of its subsequent
decays to fermion-antifermion pairs, in order not to loose
information on the interference between amplitudes with
different Z-boson helicities. On the other hand, we treat
the Higgs boson as a final-state particle because it has spin
zero. Thus, we study the production and decay processes

e+e− → HZ; Z → ff̄

to obtain sensitivity to general HZV couplings.
We first review previous studies on related problems.

The angular distribution of e+e− → Hff̄ has been ana-

lyzed for the SM at the tree level in [2]. Expressions for
the cross sections have been elaborated for beam polariza-
tion in [3]. Radiative corrections have been investigated in
[4]. A comprehensive review of the Higgs-boson properties
has been given in [5]. The HZZ form factors have been
introduced in the study of composite light Higgs bosons
[6]. Effects of the non-standard couplings have been dis-
cussed in [7,8]. Z-boson decay angular distributions in the
process e+e− → HZ have been analyzed as a means of
distinguishing a scalar from a pseudoscalar Higgs boson
in [9].

We employ the optimal-observable method [10–13] to
obtain constraints on the HZV couplings. This method
provides the most efficient way to extract physical param-
eters from experimental data in the sense that the statis-
tical errors on these parameters are minimized. Atwood
and Soni have introduced optimal observable quantities in
their analysis of electromagnetic form factors of the top
quark [10]. The optimal-observable method has also been
used in the measurement of the tau polarization [11]. This
method has then been extended to the many-parameter
case. It has been applied to the determination of the elec-
troweak triple-gauge-boson [12], Htt̄ and HZZ couplings
[13].

This paper is organized as follows. In the next sec-
tion, we cast the differential cross sections of the process
e+e− → Hff̄ into a compact form, to which the optimal-
observable method can be applied. We then discuss the
properties of the various terms therein under discrete sym-
metries. In Sect. 3, we introduce an effective Lagrangian
for the HZV interactions and calculate the helicity am-
plitudes of the process e+e− → HZ. In Sect. 4, we de-
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termine the achievable errors on the optimal observables
introduced in the general expansion of the cross section.
In Sect. 5, the optimal constraints on the effective cou-
pling constants are discussed for typical experimental sit-
uations. Our conclusions are presented in Sect. 6.

2 Cross section of e+e− → Hff̄

In this section, we present the general angular distribu-
tions of the differential cross section of the production
and decay process,

e−
(
pe,

σ

2

)
+ e+

(
pē,−

σ

2

)
→ Z∗/γ∗(q) → H(pH) + Z(pZ , λ), (2.1a)

Z(pZ , λ) → f

(
pf ,

σ′

2

)
+ f̄

(
pf̄ ,−

σ′

2

)
, (2.1b)

in a compact form suitable for the optimal-observable
method. The four-momentum and helicity of each particle
is indicated in parentheses; we have σ = ±1, σ′ = ±1 and
λ = 0,±1 .

We evaluate the production process (2.1a) in the
centre-of-mass (CM) frame of the colliding beams. The
production amplitude is then a function of the scattering
angle Θ enclosed between the incoming electron and out-
going Z-boson three-momenta, pe and pZ , respectively.
The Z-boson helicity λ is defined in the CM frame of the
colliding beams. The y axis is chosen along the pe × pZ

direction. The decay process (2.1b) is described in the rest
frame of the outgoing Z boson. Here, the z axis is chosen
along the direction of pZ (before the boost). The decay
amplitude is a function of the polar angle θ and the az-
imuthal angle ϕ of the f three-momentum.

2.1 Angular distributions

The angular distributions of the differential cross section
of e+e− → Hff̄ may be written as

dσ

d cosΘd cos θdϕ
=

9∑
i=1

[
c
(V )
i F

(V )
i (Θ, θ, ϕ)

+c
(A)
i F

(A)
i (Θ, θ, ϕ)

]
, (2.2)

where c
(V,A)
i are model-dependent coefficients and F

(V,A)
i

are known functions of the angles Θ, θ and ϕ. We shall
present the definitions of c

(V,A)
i and F

(V,A)
i below. The

functions F
(V,A)
i depend on the flavour of the final-state

fermion f and the polarization P of the initial-state elec-
tron; we have P = ±1 if the electron beam is purely
right/left-handed. We assume that the positron beam is
unpolarized. In the derivation of c(V,A)

i and F
(V,A)
i , we use

the narrow-width approximation for the Z-boson propaga-
tor and the SM amplitude for the decay process Z → ff̄ .

We define reduced helicity amplitudes M̂λ
σ by extract-

ing the angular dependence from the helicity amplitudes
Mλ

σ for e+e− → HZ as

Mλ
σ (e+e− → HZ) = M̂λ

σ d
1
σ,λ(Θ), (2.3)

where

d1
σ,λ=0(Θ) = − 1√

2
σ sinΘ,

d1
σ,λ=±(Θ) =

1
2
(1 + σλ cosΘ). (2.4)

The amplitudes M̂λ
σ do not depend on Θ.

The coefficients c
(V )
i and c

(A)
i are expressed in terms

of the amplitudes M̂λ
σ as

c
(V,A)
1 = |M̂0

R|2 ± |M̂0
L|2, (2.5a)

c
(V,A)
2 = |M̂+

R |2 + |M̂−
R |2 ±

(
|M̂+

L |2 + |M̂−
L |2
)
, (2.5b)

c
(V,A)
3 = Re

[
M̂0

R(M̂+
R )∗ + M̂−

R (M̂0
R)∗
]

±Re
[
M̂0

L(M̂
+
L )∗ + M̂−

L (M̂0
L)

∗
]
, (2.5c)

c
(V,A)
4 = Re

[
M̂−

R (M̂+
R )∗

]
± Re

[
M̂−

L (M̂+
L )∗

]
, (2.5d)

c
(V,A)
5 = Im

[
M̂0

R(M̂+
R )∗ + M̂−

R (M̂0
R)∗
]

±Im
[
M̂0

L(M̂
+
L )∗ + M̂−

L (M̂0
L)

∗
]
, (2.5e)

c
(V,A)
6 = Im

[
M̂−

R (M̂+
R )∗

]
± Im

[
M̂−

L (M̂+
L )∗

]
, (2.5f)

c
(V,A)
7 = |M̂+

R |2 − |M̂−
R |2 ±

(
|M̂+

L |2 − |M̂−
L |2
)
, (2.5g)

c
(V,A)
8 = Re

[
M̂0

R(M̂+
R )∗ − M̂−

R (M̂0
R)∗
]

±Re
[
M̂0

L(M̂
+
L )∗ − M̂−

L (M̂0
L)

∗
]
, (2.5h)

c
(V,A)
9 = Im

[
M̂0

R(M̂+
R )∗ − M̂−

R (M̂0
R)∗
]

±Im
[
M̂0

L(M̂
+
L )∗ − M̂−

L (M̂0
L)

∗
]
. (2.5i)

Here, the + (−) sign refers to V (A), and the subscript
R (L) stands for σ = +1 (σ = −1). These eighteen coeffi-
cients contain all observable consequences of the reduced
amplitudes.

The functions F
(V )
i are defined as

F
(V )
1 =

r

4
sin2 Θ sin2 θ, (2.6a)

F
(V )
2 =

r

16
(1 + cos2 Θ)(1 + cos2 θ)

−rPAf

4
cosΘ cos θ, (2.6b)

F
(V )
3 = − r

16
sin 2Θ sin 2θ cosϕ

+
rPAf

4
sinΘ sin θ cosϕ, (2.6c)

F
(V )
4 =

r

8
sin2 Θ sin2 θ cos 2ϕ, (2.6d)
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F
(V )
5 = − r

16
sin 2Θ sin 2θ sinϕ

+
rPAf

4
sinΘ sin θ sinϕ, (2.6e)

F
(V )
6 =

r

8
sin2 Θ sin2 θ sin 2ϕ, (2.6f)

F
(V )
7 = −rAf

8
(1 + cos2 Θ) cos θ

+
rP

8
cosΘ(1 + cos2 θ), (2.6g)

F
(V )
8 =

rAf

8
sin 2Θ sin θ cosϕ

−rP

8
sinΘ sin 2θ cosϕ, (2.6h)

F
(V )
9 =

rAf

8
sin 2Θ sin θ sinϕ

−rP

8
sinΘ sin 2θ sinϕ. (2.6i)

The common coefficient r contains some phase space fac-
tors and the branching fraction of the Z → ff̄ decay,

r =
1
4

βHZ

32πs
3
4π

Br
(
Z → ff̄

)
, (2.7)

and Af is the left-right asymmetry of this decay,

Af =

(
gf

L

)2
−
(
gf

R

)2

(
gf

L

)2
+
(
gf

R

)2 . (2.8)

Here, s is the square of the CM energy, and βHZ is the
two-body phase-space factor,

βHZ =

√
1 − 2

m2
Z +m2

H

s
+
(
m2

Z − m2
H

s

)2

. (2.9)

The functions F
(A)
i are obtained by flipping the P de-

pendence. Specifically, if we write F
(V )
i = αi + βiP , with

P -independent functions αi and βi, then we have F
(A)
i =

αiP + βi. The explicit expressions read

F
(A)
1 =

rP

4
sin2 Θ sin2 θ, (2.10a)

F
(A)
2 =

rP

16
(1 + cos2 Θ)(1 + cos2 θ)

−rAf

4
cosΘ cos θ, (2.10b)

F
(A)
3 = −rP

16
sin 2Θ sin 2θ cosϕ

+
rAf

4
sinΘ sin θ cosϕ, (2.10c)

F
(A)
4 =

rP

8
sin2 Θ sin2 θ cos 2ϕ, (2.10d)

F
(A)
5 = −rP

16
sin 2Θ sin 2θ sinϕ

+
rAf

4
sinΘ sin θ sinϕ, (2.10e)

F
(A)
6 =

rP

8
sin2 Θ sin2 θ sin 2ϕ, (2.10f)

F
(A)
7 = −rPAf

8
(1 + cos2 Θ) cos θ

+
r

8
cosΘ(1 + cos2 θ), (2.10g)

F
(A)
8 =

rPAf

8
sin 2Θ sin θ cosϕ

−r

8
sinΘ sin 2θ cosϕ, (2.10h)

F
(A)
9 =

rPAf

8
sin 2Θ sin θ sinϕ

−r

8
sinΘ sin 2θ sinϕ. (2.10i)

The three angular functions F
(A)
1 , F (A)

4 and F
(A)
6 vanish

if P = 0. One could measure c
(A)
1 , c(A)

4 and c
(A)
6 if |P | �=

0 by combining experiments with opposite polarizations
P = |P | and P = −|P |.

For most of the hadronic decay modes of the Z boson,
the final-state fermions f and f̄ cannot be distinguished.
Then, we have to average over the configurations with
(Θ, θ, ϕ) and (Θ, π − θ, ϕ ± π) as

F̄
(V,A)
i (Θ, θ, ϕ) =

1
2

[
F

(V,A)
i (Θ, θ, ϕ)

+F
(V,A)
i (Θ, π − θ, ϕ ± π)

]
. (2.11)

This corresponds to setting Af = 0 if f is a quark. If
P = 0, then one can measure the coefficients c(V )

1 , . . . , c
(V )
6

and c
(A)
7 , . . . , c

(A)
9 , while the coefficients c(V )

7 , . . . , c
(V )
9 and

c
(A)
1 , . . . , c

(A)
6 are only measurable if P �= 0.

When the Z bosons decay to neutrino pairs, one can
only measure the Θ distribution, so that the (θ, ϕ) depen-
dences should be integrated out. Then, we have

dσ

d cosΘ
=

∑
i=1,2,7

[
c
(V )
i F̃

(V )
i (Θ) + c

(A)
i F̃

(A)
i (Θ)

]
, (2.12)

where

F̃
(V )
1 =

2πr
3

sin2 Θ, (2.13a)

F̃
(V )
2 =

πr

3
(1 + cos2 Θ), (2.13b)

F̃
(V )
7 =

2πrP
3

cosΘ, (2.13c)

F̃
(A)
1 =

2πrP
3

sin2 Θ, (2.13d)

F̃
(A)
2 =

πrP

3
(1 + cos2 Θ), (2.13e)

F̃
(A)
7 =

2πr
3

cosΘ, (2.13f)

while the other F̃
(V,A)
i functions vanish.

2.2 Discrete symmetries

We now discuss the properties of the F
(V,A)
i functions un-

der the discrete symmetries CP and CPT̃ . Here, T̃ is the
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Table 1. CP and CPT̃ properties of the F
(V,A)
i functions. A

+ (−) sign means even (odd) under the symmetry

i 1 2 3 4 5 6 7 8 9
CP + + + + − − − − +

CPT̃ + + + + + + − − −

naive time reversal symmetry, which flips the momentum
and spin of all the particles, but does not reverse the time
flow from the initial state to the final state. The non-
vanishing of the CPT̃ -odd coefficients is related to the
presence of absorptive parts in the amplitudes [14].

The electron beam polarization P , the decay asym-
metry Af and the angular variables transform under the
discrete symmetries as

(P,Af ;Θ, θ, ϕ) CP→ (P,Af ;π − Θ, π − θ, 2π − ϕ), (2.14a)

(P,Af ;Θ, θ, ϕ) T̃→ (P,Af ;Θ, θ, 2π − ϕ). (2.14b)

We can then obtain the symmetry properties of the F (V,A)
i

functions, which are summarized in Table 1.
The coefficients c

(V,A)
i have the same symmetry prop-

erties as the functions F
(V,A)
i . The coefficients c

(V,A)
5 and

c
(V,A)
6 are sensitive to CP -odd and CPT̃ -even quantities.
When the new-physics effects are generated by exchanges
of heavy particles, then the induced vertices should be
CPT̃ even. The three CPT̃ -odd coefficients c

(V,A)
7 , c(V,A)

8

and c
(V,A)
9 should be proportional to the absorptive parts

of the amplitudes which contain light particles in the loops.

3 Helicity amplitudes for e+e− → HZ

In this section, we first introduce general couplings and
effective form factors for the HZZ and HZγ interactions.
We then present the helicity amplitudes of e+e− → HZ
using these form factors.

We adopt the effective HZV interaction Lagrangian
from [8]. It reads

Leff = (1 + aZ)
gZmZ

2
HZµZ

µ

+
gZ

mZ

∑
V =Z,γ

[
bV HZµνV

µν (3.1)

+cV (∂µHZν − ∂νHZµ)V µν + b̃V HZµν Ṽ
µν
]
,

where Vµν = ∂µVν − ∂νVµ and Ṽµν = εµναβV
αβ/2 with

the convention ε0123 = +1. We have neglected the scalar
component of the vector bosons by putting

∂µZ
µ = ∂µV

µ = 0. (3.2)

Then, the most general parameterization of the HZV in-
teraction involves seven couplings, aZ , bZ , cZ , bγ , cγ , b̃Z

and b̃γ , which are constants as long as we only consider

operators through mass dimension five. We note in par-
ticular that the operator identity

HZµ∂
2Zµ = HZµ∂νZ

νµ

= −1
2
HZµνZ

µν

−1
2
(∂µHZν − ∂νHZµ)Zµν (3.3)

holds under the condition (3.2). The five couplings aZ , bZ ,
cZ , bγ and cγ are CP even, while the remaining two cou-
plings, b̃Z and b̃γ , are CP odd. In the effective Lagrangian
(3.2), we have factored out the Z-boson coupling gZ and
appropriate powers of mZ to render the couplings dimen-
sionless. In the SM, we have aZ = bV = cV = b̃V = 0 at
the tree level.

The form factors for the generic HZαVβ vertex may
then be written as

ΓV
αβ(q, pZ) = gZmZ

[
hV

1 (s)gαβ +
hV

2 (s)
m2

Z

qαpZβ

+
hV

3 (s)
m2

Z

εαβµνq
µpν

Z

]
, (3.4)

where the virtual V -boson momentum q is taken to be
incoming and the Z-boson momentum pZ to be outgoing,
as depicted in Fig. 1 and process (2.1), and s = q2. All
form factors hV

i are dimensionless functions of s. The four
form factors hZ

1 , hZ
2 , hγ

1 and hγ
2 are CP even, while the two

form factors hZ
3 and hγ

3 are CP odd. It is straightforward
to express the form factors in terms of the seven couplings
of the effective Lagrangian (3.1):

hZ
1 (s) = 1 + aZ + 2cZ

s+m2
Z

m2
Z

+2(bZ − cZ)
s+m2

Z − m2
H

m2
Z

, (3.5a)

hZ
2 (s) = −4(bZ − cZ), (3.5b)

hZ
3 (s) = −4b̃Z , (3.5c)

hγ
1(s) = 2cγ

s

m2
Z

+ (bγ − cγ)
s+m2

Z − m2
H

m2
Z

, (3.5d)

hγ
2(s) = −2(bγ − cγ), (3.5e)

hγ
3(s) = −2b̃γ . (3.5f)

Although the effective Lagrangian has seven couplings,
there are only six form factors. Thus, one combination of
couplings cannot be measured at one given collider energy.
Details will be discussed in Sect. 5.

We now evaluate the helicity amplitudes Mλ
σ (e+e− →

HZ) for the production process. After extracting the an-
gular dependence according to (2.3), we obtain the re-
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Fig. 1. General HZV coupling. The ar-
rows indicate the direction of the four-
momentum flow

duced amplitudes1 as functions of s:

M̂λ=0
σ (s) = −g2

Zg
e
σ

√
2sEZDZ(s)

(
hZ

1 + hZ
2

√
sEZβ

2
Z

m2
Z

)
+egZ

√
2sEZDγ(s)

×
(
hγ

1 + hγ
2

√
sEZβ

2
Z

m2
Z

)
, (3.6a)

M̂λ=±
σ (s) = −g2

Zg
e
σ

√
2smZDZ(s)

(
hZ

1 + iλhZ
3

√
sEZβZ

m2
Z

)
+egZ

√
2smZDγ(s)

×
(
hγ

1 + iλhγ
3

√
sEZβZ

m2
Z

)
, (3.6b)

where ge
R = sin2 θW , ge

L = −1/2 + sin2 θW , βZ =√
1 − m2

Z/E
2
Z and

DZ(s) =
1

s − m2
Z + imZΓZ

, (3.7)

Dγ(s) =
1
s
. (3.8)

The energy of the outgoing Z boson is

EZ =
√
s

2

(
1 − m2

H − m2
Z

s

)
. (3.9)

The couplings ge
R and ge

L have almost the same magni-
tudes, but their signs are opposite to each other. Thus,
the coefficients c

(V )
i are sensitive to the HZZ couplings,

while the coefficients c
(A)
i are sensitive to the HZγ cou-

plings.

4 Optimal observables

We now employ the optimal-observable method [12,13] to
obtain the errors on the coefficients c(V )

i and c
(A)
i . In order

to simplify the notation, let us re-sequence the coefficients
and functions for the time being as

(c1, . . . , c18) = (c(V )
1 , . . . , c

(V )
9 , c

(A)
1 , . . . , c

(A)
9 ), (4.1a)

(F1, . . . , F18) = (F (V )
1 , . . . , F

(V )
9 , F

(A)
1 , . . . , F

(A)
9 ). (4.1b)

1 In [8], there is a misprint in the relative sign of the helicity
amplitudes. There should be an overall minus sign on the right-
hand side of (2.3) therein. Furthermore, Im [(M̂+

σ +M̂−
σ )(M̂0

σ)∗]
and Im [(M̂+

σ −M̂−
σ )(M̂0

σ)∗] should be interchanged in the first
column of Table 1.

According to the optimal-observable method, the covari-
ance matrix Vij for the coefficients ci is given by

V −1
ij = L

∫
Fi(Θ, θ, ϕ)Fj(Θ, θ, ϕ)

ΣSM(Θ, θ, ϕ)
d cosΘ cos θdϕ, (4.2)

where L is the integrated luminosity of the experiment
and

ΣSM(Θ, θ, ϕ) =
dσSM

d cosΘ cos θdϕ
(Θ, θ, ϕ). (4.3)

The statistical error on ci is
√
Vii, and the correlation

between the errors on ci and cj is Vij/
√

ViiVjj . We use
this method to obtain V −1

ij for each decay mode of the Z
boson. We then combine these results for all the Z-boson
decay modes.

The differential cross section ΣSM is a linear combi-
nation of F

(V )
1 , . . . , F

(V )
4 and F

(A)
1 , . . . , F

(A)
4 , which are

CP and CPT̃ even. The component Vij of the covariance
matrix vanishes if Fi and Fj have different CP or CPT̃
properties. Thus, the covariance matrix is block diagonal-
ized into four sub-matrices according to the CP and CPT̃
properties of the Fi functions discussed in Sect. 2.2. No-
tice that this argument is only valid if we integrate in (4.2)
over the full angle domains. In practice, there are excluded
regions due to the geometry of the detectors or cuts for
selecting events. Thus, the block diagonal structure of the
covariance matrix is only approximately realized in prac-
tice. In the present study, we shall integrate over the full
phase space.

We estimate how the optimal errors are reduced by the
following three additional techniques. The first one is the
tau helicity measurement. We adopt ετ = 40% as the effi-
ciency factor to determine the helicities of the decaying τ+

or τ− leptons. The second technique is the electric-charge
identification for the bottom quarks and antiquarks. The
charge of a hadron B containing one b or b̄ quark can be
identified via the decay mode B → lν+X. We assume an
efficiency of εb = 20% for identifying the charges of the
decaying b or b̄ hadrons. The third technique is to employ
electron beam polarization P . We take |P | = 90% as the
target polarization. Specifically, we assume that one half
of the beam is polarized with P = 0.9 and the other half
with P = −0.9.

For the fraction ετ of the Z → τ+τ− decays, one can
distinguish the tau polarization. In order to assess the
possible benefits of the tau polarization measurement, we
make the simple assumption that the efficiencies for ob-
serving a left- or right-handed tau lepton are ετ . Then, we
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substitute in (2.6) and (2.10)

r =
3βHZ

512π2s
Br(Z → τ+τ−)

(
gτ

L/R

)2

(gτ
L)

2 + (gτ
R)2

ετ , (4.4a)

Af = ±1 (4.4b)

for left/right-handed tau leptons. In actual experiments,
one should not only estimate the efficiency factor ετ for
each pair of τ+ and τ− decay modes, but also a correlation
between the constraints from τ−

L production and those
from τ−

R production. We return to this problem at the
end of this section.

Throughout our numerical analysis, we set mZ =
91.187 GeV [15], α = 1/128.9 [16], sin2 θW = 0.2312 and

gZ =
√

4
√
2GFm2

Z = 0.74070. As an example, we show
results for the Higgs boson mass mH = 120 GeV, the CM
energy

√
s = 250 GeV and the nominal integrated lumi-

nosity L = 10 fb−1.
We first present the results for ετ = εb = P = 0. The

results for the CP -even and CPT̃ -even coefficients and
their block in the covariance matrix are

c
(V )
1 = .0208 ± .0011
c
(V )
2 = .0271 ± .0012
c
(V )
3 = .0336 ± .0049
c
(V )
4 = .0136 ± .0026
c
(A)
2 = −.004 ± .025
c
(A)
3 = −.005 ± .020

,




1
−.66 1
−.02 .13 1
.10 −.02 .06 1
.00 −.00 −.00 −.00 1

−.00 −.00 −.00 −.00 .10 1




. (4.5)

The results for the CP -odd and CPT̃ -even coefficients are

c
(V )
5 = 0 ± .0047
c
(V )
6 = 0 ± .0026
c
(A)
5 = 0 ± .018

,


 1

.07 1
−.00 −.00 1


 . (4.6)

The results for the CP -odd and CPT̃ -odd coefficients are

c
(V )
7 = 0 ± .021
c
(V )
8 = 0 ± .042
c
(A)
7 = 0 ± .0010
c
(A)
8 = 0 ± .0022

,




1
.12 1

−.00 −.00 1
−.00 −.00 .11 1


 . (4.7)

The results for the CP -even and CPT̃ -odd coefficients are

c
(V )
9 = 0 ± .039
c
(A)
9 = 0 ± .0021

,

(
1

−.00 1

)
. (4.8)

There are no constraints on c
(A)
1 , c

(A)
4 and c

(A)
6 because

F
(A)
1 , F

(A)
4 and F

(A)
6 vanish if P = 0. The errors on

c
(A)
2 , c

(A)
3 , c

(A)
5 , c

(V )
7 , c

(V )
8 and c

(V )
9 are relatively large

because the corresponding F
(V,A)
i functions in (2.10) are

suppressed by the smallness of Af and the vanishing of P .
Next, we present the results for ετ = 40%, εb = 20%

and |P | = 90%. The results for the CP -even and CPT̃ -
even coefficients are

c
(V )
1 = .0208 ± .0011
c
(V )
2 = .0271 ± .0012
c
(V )
3 = .0336 ± .0028
c
(V )
4 = .0136 ± .0026
c
(A)
1 = −.0031 ± .0012
c
(A)
2 = −.0041 ± .0013
c
(A)
3 = −.0050 ± .0027
c
(A)
4 = −.0020 ± .0029

,




1
−.65 1
.14 .06 1
.10 −.01 .20 1

−.13 .08 −.03 −.01 1
.08 −.13 .00 −.00 −.65 1

−.03 .00 −.06 −.04 .15 .05 1
−.01 −.00 −.04 −.13 .10 −.01 .20 1




. (4.9)

The results for the CP -odd and CPT̃ -even coefficients are

c
(V )
5 = 0 ± .0031
c
(V )
6 = 0 ± .0026
c
(A)
5 = 0 ± .0030
c
(A)
6 = 0 ± .0029

,




1
.18 1

−.11 −.04 1
−.03 −.13 .19 1


 . (4.10)

The results for the CP -odd and CPT̃ -odd coefficients are

c
(V )
7 = 0 ± .0011
c
(V )
8 = 0 ± .0023
c
(A)
7 = 0 ± .0010
c
(A)
8 = 0 ± .0021

,




1
.17 1

−.13 −.03 1
−.03 −.12 .16 1


 . (4.11)

The results for the CP -even and CPT̃ -odd coefficients are

c
(V )
9 = 0 ± .0023
c
(A)
9 = 0 ± .0021

,

(
1

−.13 1

)
. (4.12)

The errors on c
(A)
i with i = 1, . . . , 6 and c

(V )
i with i =

7, 8, 9 are reduced to the level of those on the other co-
efficients because the suppression of the corresponding
F

(V,A)
i functions in (2.10) is weaker than in the case of

ετ = εb = P = 0. On the other hand, the errors on the
other coefficients are not further reduced relative to the
former situation.
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Table 2. Optimal errors on the real parts of the general HZV
couplings at

√
s = 250 GeV

ετ — 0.4 — — 0.4
εb — — 0.2 — 0.2
|P | — — — 0.9 0.9

Re (bZ + .059aZ) .0061 .0036 .0033 .0030 .0029
Re (cZ + .059aZ) .013 .0076 .0070 .0061 .0061

Re bγ .19 .072 .053 .0085 .0084
Re cγ .12 .047 .035 .0053 .0052
Re b̃Z .012 .011 .010 .010 .0091
Re b̃γ .094 .036 .026 .016 .013

We mention here the effect of the correlation between
the constraints from τL production and those from τR pro-
duction. In actual experiments, τL and τR leptons can only
be identified on a statistical basis. The analyzing power
of the semileptonic tau decays is, in principle, equal for
all the semileptonic tau decay modes [17]. By using the
τ− → ντπ

− decay mode, we evaluate the effect of the τL-
τR correlation on the errors on c

(V,A)
i . We find that the

errors on c
(V,A)
i may be increased by about 20% in actual

experiments.

5 Constraints on general HZV couplings

We are now ready to study the sensitivities to the seven
general HZV coupling constants. The errors on these cou-
plings are obtained from those on c

(V,A)
i by using (2.5),

(3.5) and (3.6). We quantitatively analyze the usefulness
of electron beam polarization and of an additional exper-
iment with another beam energy. For consistency of the
analysis that includes the operators through mass dimen-
sion five, we only keep in c

(V,A)
i terms linear in the cou-

pling.

5.1 Real part

We first discuss the constraints on the real parts of the
general HZV couplings. The constraints on the real parts
of the CP -even couplings are obtained from the CP -even
and CPT̃ -even coefficients c

(V,A)
1 , . . . , c

(V,A)
4 , while those

on the real parts of the CP -odd couplings are obtained
from the CP -odd and CPT̃ -even coefficients c

(V,A)
5 and

c
(V,A)
6 .

We first present the results for
√
s = 250 GeV. The

optimal errors on the HZV couplings are summarized in
Table 2. We only gain sensitivity to six combinations of
couplings. As long as we consider experiments at a fixed
collider energy, one combination of couplings cannot be
measured. The unmeasurable combination of couplings is
determined from (3.5) and reads

aZ − (bZ + cZ)
m2

Z

2(s+m2
Z)

. (5.1)

It is independent of the final-state fermion flavour f and
the electron beam polarization P . We are thus insensi-
tive to this combination for all Z-bosons decay modes.
Since aZ is the dominant part of (5.1), we fix aZ to ob-
tain the optimal sensitivities to the remaining six coupling
constants bZ , cZ , bγ , cγ , b̃Z and b̃γ . The combinations
Re (bZ + .059aZ) and Re (cZ + .059aZ), which appear in
Table 2, are orthogonal to the unmeasurable combination
(5.1).

For ετ = εb = P = 0, we have good sensitivities only
to the three HZZ couplings bZ , cZ and b̃Z , but not to the
HZγ couplings bγ , cγ and b̃γ , which is evident from Ta-
ble 2. The functions F (A)

i with i = 1, . . . , 6 are suppressed
in magnitude by the smallness of Af and the vanishing of
P , while the functions F (V )

i with i = 1, . . . , 6 have unsup-
pressed parts.

By using any of the three additional techniques, we
gain better sensitivities to the HZγ couplings because
F

(A)
i with i = 1, . . . , 6 are then less suppressed. The mea-

surement of the tau helicity with 40% efficiency reduces
the errors on bγ , cγ and b̃γ by a factor of about 2/5 rela-
tive to the case without tau helicity measurement. Bottom
charge identification with 20% efficiency reduces the errors
on these couplings by a factor of 2/7. We observe that the
tau helicity measurement leads to an improvement com-
parable to that for the bottom charge identification. This
may be understood qualitatively from the relation

√
εb
ετ

Br(Z → bb̄)
Br(Z → τ−τ+)

|Ab| ≈ 1.5 ≈ 2/5
2/7

. (5.2)

The electron beam polarization is the most efficient tech-
nique for improving the sensitivities. It reduces the errors
on the CP -even (CP -odd) HZγ couplings by a factor of
about 1/20 (1/6). A qualitative understanding hereof is
obtained from the relation

√
1
ετ

1
Br(Z → τ−τ+)

|P | ≈ 8.2 ≈ 2/5
1/20

, (5.3)

for the CP -even couplings. We find from Table 2 that the
errors on the CP -even HZZ couplings are reduced by a
factor of 1/2 with these three additional techniques, while
the CP -odd HZZ couplings are almost unchanged.

For ετ = εb = P = 0, the errors on the real parts of the
couplings and the corresponding correlation matrix are

Re (bZ + .059aZ) = 0 ± .0061
Re (cZ + .059aZ) = 0 ± .013

Re bγ = 0 ± .19
Re cγ = 0 ± .12
Re b̃Z = 0 ± .012
Re b̃γ = 0 ± .094

,
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


1
−.95 1
−.86 .88 1
.83 −.89 −.99 1
0 0 0 0 1
0 0 0 0 −.46 1




. (5.4)

There are strong correlations among the errors on bZ , cZ ,
bγ and cγ . Thus, a certain combination of parameters is
more strongly constrained than the individual parameters.
The eigenvector with the smallest eigenvalue and its error
read

Re (.08aZ + .90bZ + .42cZ + .05bγ + .08cγ)
= 0 ± .00076. (5.5)

The above combination may be understood qualitatively
by observing that an experiment at

√
s = 250 GeV oper-

ates near the threshold of the HZ production process,
where βHZ ≈ 0. Near the threshold, the form factors
hZ

1 and hγ
1 play a dominant role in the helicity ampli-

tudes, while the residual form factors are suppressed by
the smallness of βHZ . Specifically, we have

M̂λ
σ = gZ

√
2smZ

[−gZg
e
σDZ(s)hZ

1

+eDγ(s)h
γ
1 ] +O(β). (5.6)

Furthermore, the sensitivities to the HZγ couplings are
diminished for ετ = εb = P = 0 because sin2 θW ≈ 1/4.
Thus, near threshold there is good sensitivity to the fol-
lowing combination of couplings:

hZ
1 ≈ 1 + aZ + 4bZ

(
1 +

mH

mZ

)
+ 2cZ

m2
H

m2
Z

. (5.7)

This is essentially the combination that appears in the
constraint (5.5).

In models with multiple Higgs doublets, including the
minimal supersymmetric extension of the SM (MSSM),
the coupling aZ is modified at the tree level, while the
couplings bV , cV and b̃V only receive corrections at the
loop level. Thus, we discuss here the sensitivity to aZ when
bV = cV = b̃V = 0. From (5.4), we then obtain

Re aZ = 0 ± 0.010 (5.8)

at
√
s = 250 GeV.

For ετ = 40%, εb = 20% and |P | = 90%, the errors
and correlation matrix are found to be

Re (bZ + .059aZ) = 0 ± .0029
Re (cZ + .059aZ) = 0 ± .0061

Re bγ = 0 ± .0084
Re cγ = 0 ± .0052
Re b̃Z = 0 ± .0091
Re b̃γ = 0 ± .013

,




1
−.96 1
−.08 .08 1
.08 −.09 −.99 1
0 0 0 0 1
0 0 0 0 −.09 1




. (5.9)

We obtain similar correlation matrices for the other sit-
uations when only one of the three additional measure-
ments is employed. The correlations between the HZZ
and HZγ couplings then disappear. There are still strong
correlations between bZ and cZ and between bγ and cγ .
The eigenvectors of the two smallest eigenvalues and their
errors are

Re (.025aZ + .28bZ + .14cZ + .50bγ + .81cγ)
= 0 ± .00068, (5.10a)

Re (.074aZ + .86bZ + .40cZ − .17bγ − .27cγ)
= 0 ± .00078. (5.10b)

As in (5.6), the form factors hZ
1 and hγ

1 become dominant
near the threshold, and there is good sensitivity to the
following two combinations of couplings:

hZ
1 ≈ 1 + aZ + 4bZ

(
1 +

mH

mZ

)
+ 2cZ

m2
H

m2
Z

, (5.11a)

hγ
1 ≈ 2bγ

(
1 +

mH

mZ

)
+ 2cγ

(
mH

mZ

+
m2

H

m2
Z

)
. (5.11b)

The most strongly constrained combinations listed in
(5.10) are essentially linear superpositions of hZ

1 − 1 and
hγ

1 as given in (5.11).
We now discuss the sensitivity to aZ when bV = cV =

b̃V = 0. The six-parameter constraints (5.9) then lead to
the one-parameter constraint

Re aZ = 0 ± 0.010 (5.12)

at
√
s = 250 GeV. This constraint is same as in (5.8).

The error on aZ is not diminished by any of the three
experimental options.

Figure 2 displays the contours of χ2 = 1 (39% CL) in
the (bγ , cγ) plane for the different modes of experiment.
The other five degrees of couplings have been integrated
out. We observe that there is a strong correlation between
bγ and cγ for all experimental methods. As mentioned
above, the specific combination of bγ and cγ contained in
(5.10) is thus tightly restricted. We can see from Fig. 2
that the individual sensitivities to bγ and cγ are drasti-
cally improved by the electron beam polarization. This
means that we can obtain strict constrains on any model
that predicts large HZγ couplings by using data from ex-
periments with polarized electron beams.

Figure 3 displays the contours of χ2 = 1 in the (bZ , cZ)
plane. We see that theHZZ couplings are well constrained
even if ετ = εb = P = 0. The three charge and polarization
measurements lead to moderate reductions of the errors
on bZ and cZ .
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bγ

c γ

-0.05

0

0.05

-0.1 -0.05 0 0.05 0.1

Fig. 2. Contours of χ2 = 1 in the (bγ , cγ) plane for
√

s =
250 GeV. The other degrees of general couplings are integrated
out. The central values of bγ and cγ are assumed to coincide
with their SM values, bγ = cγ = 0. The errors are estimated by
means of the optimal-observable method under the following
four conditions: a ετ = εb = P = 0; b ετ = 0.4 and εb = P = 0;
c εb = 0.2 and ετ = P = 0; or d ετ = 0.4, εb = 0.2 and |P | = 0.9

Figure 4 shows the contours of χ2 = 1 in the (b̃Z , b̃γ)
plane. The three charge and polarization measurements
mainly reduce the error on b̃γ . The reduction of the er-
ror on b̃γ is transferred to that on b̃Z via the correlation
between b̃Z and b̃γ .

Next, we consider the case of
√
s = 500 GeV. The

results for ετ = 40%, εb = 20% and P = 90% are

Re (bZ + .016aZ) = 0 ± .0015
Re (cZ + .016aZ) = 0 ± .0007

Re bγ = 0 ± .0024
Re cγ = 0 ± .0005
Re b̃Z = 0 ± .0042
Re b̃γ = 0 ± .0052

,




1
−.77 1
−.09 .07 1
.07 −.09 −.84 1
0 0 0 0 1
0 0 0 0 −.09 1




. (5.13)

Although the cross section at
√
s = 500 GeV is smaller

than the one at
√
s = 250 GeV, the errors are reduced

because bV , cV and b̃V are accompanied by a factor of
s/m2

Z . Increasing the CM energy from
√
s = 250 GeV to√

s = 500 GeV reduces the errors on bZ and bγ by a factor
of 1/2 to 1/3 and those on cZ and cγ by a factor of 1/7
to 1/10. This also reduces the errors on the CP -odd cou-
plings b̃Z and b̃γ by a factor of 1/2. The strong correlations
are lost because the experiment at

√
s = 500 GeV is far

above the threshold, and the various form factors in the
helicity amplitudes are non-negligible. At

√
s = 500 GeV,

bZ

c Z

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

-0.01 -0.005 0 0.005 0.01

Fig. 3. Contours of χ2 = 1 in the (bZ , cZ) plane for
√

s =
250 GeV. aZ = 0 and the other degrees of general couplings
are integrated out. The central values of bZ and cZ are assumed
to coincide with their SM values, bZ = cZ = 0

b
∼

Z

b∼
γ

-0.1

-0.05

0

0.05

0.1

-0.04 -0.02 0 0.02 0.04

Fig. 4. Contours of χ2 = 1 in the (b̃Z , b̃γ) plane for
√

s =
250 GeV. The other degrees of general couplings are integrated
out. The central values of b̃Z and b̃γ are assumed to coincide
with their SM values, b̃Z = b̃γ = 0

the sensitivity to aZ becomes

Re aZ = 0 ± 0.021 (5.14)

if bV , cV and b̃V are fixed to zero. This error is larger than
the one at

√
s = 250 GeV because aZ is the coefficient of

the renormalizable dimension-four operator. We conclude
that aZ may be well measured at the CM energy where
the cross section of HZ production has its maximum.

Finally, we present optimal constraints on the seven
parameters in (3.2) by combining the analyses at

√
s =

250 GeV and
√
s = 500 GeV with ετ = 40%, εb = 20%

and P = 90%. Here, we face the problem that our results
depend on the integrated luminosities at the two ener-
gies. At fixed energy, our constraints scale as L−1/2. We
can arbitrarily scale our results by changing the nominal
value of L, which could include more realistic experimen-
tal efficiencies. Once we combine the analyses at the two
energies, our results will depend on the ratio of the two
respective values of L, which we cannot fix a priori. For
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simplicity, we assume the same luminosity, L = 10 fb−1,
at both energies. The results are then

Re (bZ + .066aZ) = 0 ± .0009
Re cZ = 0 ± .0006
Re bγ = 0 ± .0015
Re cγ = 0 ± .0004
Re b̃Z = 0 ± .0038
Re b̃γ = 0 ± .0049

,




1
−.68 1
−.08 .07 1
.06 −.08 −.79 1
0 0 0 0 1
0 0 0 0 −.09 1




. (5.15)

The minimum χ2 is found to be

χ2
min =

(
Re aZ

0.024

)2

. (5.16)

So far, we have considered aZ as a fixed parameter. Now,
χ2

min is a function of aZ , so that we can obtain optimal
constraints on all seven HZV couplings. The result is

Re aZ = 0 ± .024
Re bZ = 0 ± .0018
Re cZ = 0 ± .0006
Re bγ = 0 ± .0015
Re cγ = 0 ± .0004
Re b̃Z = 0 ± .0038
Re b̃γ = 0 ± .0049

,




1
−.87 1
−.02 −.31 1
.00 −.04 .07 1
.00 .03 −.08 −.79 1
0 0 0 0 0 1
0 0 0 0 0 −.09 1




. (5.17)

Now, aZ is weakly constrained. There is a strong corre-
lation between aZ and bZ . This reflects the fact that the
combination Re (bZ + .066aZ) in (5.15) is more strongly
constrained than Re bZ .

Figure 5 illustrates how aZ is constrained. As men-
tioned above, there is a combination of couplings, namely
the one in (5.1), that is not constrained by an experiment
at a single CM energy. The projections of the cylinder de-
fined by χ2 = 1 onto the (aZ , bZ), (bZ , cZ) and (cZ , aZ)
planes are indicated as the stripes between the dashed
(thin solid) lines for

√
s = 250 (500) GeV. Because the di-

rection of the cylinder varies with
√
s, the measurements

at the two energies,
√
s = 250 GeV and 500 GeV, lead to

individual constraints on aZ , bZ and cZ .
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0.004
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Fig. 5. The projections of the χ2 = 1 contours onto the
(aZ , bZ), (bZ , cZ) and (cZ , aZ) planes for

√
s = 250 GeV and

500 GeV. The central values of aZ , bZ and cZ are assumed
to coincide with their SM values, aZ = bZ = cZ = 0. The
errors are estimated under the condition ετ = 0.4, εb = 0.2
and |P | = 0.9. Dashed (thin solid) lines represent the one-σ
contours obtained at

√
s = 250 (500) GeV. Thick solid curves

represent the combined one-σ contours

So far, we have assumed that aZ is constant. In general,
aZ may have some energy dependence,

aZ(s) = aZ(0) + sa′
Z(0) +O(s2). (5.18)

The O(s2) term is neglected in our approximation. In
terms of operators, the derivative term corresponds to a
dimension-five operator and should be exhausted by the
effective Lagrangian (3.2). In fact, it may be written as a
linear combination of the bZ and cZ terms because of the
operator identity (3.3).

5.2 Imaginary part

We now discuss the sensitivities to the imaginary parts of
the general HZV couplings. Imaginary parts can arise if
the couplings are induced by new interactions involving
particles that can be produced at the energy of the con-
sidered experiment. For consistency, we neglect the ab-
sorptive part in the Z-boson propagator as we ignore all
absorptive parts in the SM amplitudes. The constraints on
the imaginary parts of the CP -even couplings are then ob-
tained from the CP -even and CPT̃ -odd coefficient c(V,A)

9 ,
while the constraints on the imaginary parts of the CP -
odd couplings are obtained from the CP -odd and CPT̃ -
odd coefficients c

(V,A)
7 and c

(V,A)
8 . The results are sum-

marized in Table 3. In contrast to the real parts of the
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Table 3. Optimal errors on the imaginary parts of the general
HZV couplings at

√
s = 250 GeV

ετ — 0.4 — — 0.4
εb — — 0.2 — 0.2
|P | — — — 0.9 0.9

Im (bZ − cZ) .25 .095 .071 .015 .014
Im (bγ − cγ) .055 .027 .023 .018 .018

Im b̃Z .049 .018 .014 .0026 .0026
Im b̃γ .010 .0050 .0043 .0032 .0032

HZV couplings, one can only measure four combinations
of their imaginary parts. The other combinations, Im aZ ,
Im (bZ + cZ) and Im (bγ + cγ), only affect the form factor
hV

1 , but not hV
2 or hV

3 . They contribute to the amplitudes
as a common overall phase, and hence they do not alter
the extracted values of c(V,A)

i . Thus, these other combina-
tions cannot be measured.

For ετ = εb = P = 0, the functions F
(V )
i with i =

7, 8, 9 are suppressed in magnitude by the smallness of
Af and the vanishing of P , while the functions F

(A)
i with

i = 7, 8, 9 have unsuppressed parts. Thus, the errors on
Im (bγ − cγ) and Im b̃γ are much smaller than those on
Im (bZ − cZ) and Im b̃Z , respectively, as may be seen in
Table 3.

By using any of the three charge and polarization mea-
surements, we gain better sensitivities to the HZZ cou-
plings because the functions F

(V )
i with i = 7, 8, 9 are less

strongly suppressed. The measurement of the tau helicity
with 40% efficiency reduces the errors on the HZZ cou-
plings by a factor of about 2/5. The bottom charge iden-
tification with 20% efficiency leads to a reduction by a
factor of 2/7. The electron beam polarization is the most
efficient technique for improving the sensitivities. It re-
duces these errors by a factor of 1/20. The errors on the
HZγ couplings are reduced by a factor of 1/2 with tau he-
licity measurements or bottom charge identification, and
by a factor of 1/3 with beam polarization.

For ετ = εb = P = 0, the errors and the correlation
matrix are

Im (bZ − cZ) = 0 ± .25
Im (bγ − cγ) = 0 ± .055

Im b̃Z = 0 ± .049
Im b̃γ = 0 ± .010

,




1
−.94 1
0 0 1
0 0 −.95 1


 . (5.19)

There are strong correlations between the errors on the
first two terms and those of the latter two. The eigenvec-
tors of the two smallest eigenvalues and their errors read

Im (.20 b̃Z + .98 b̃γ) = 0 ± .0031, (5.20a)
Im [.20 (bZ − cZ) + .98 (bγ − cγ)] = 0 ± .018. (5.20b)

For ετ = 40%, εb = 20% and P = 90%, we have

Im (bZ − cZ) = 0 ± .014
Im (bγ − cγ) = 0 ± .018

Im b̃Z = 0 ± .0026
Im b̃γ = 0 ± .0032

,




1
−.10 1
0 0 1
0 0 −.10 1


 . (5.21)

The strong correlation between the HZZ and HZγ cou-
plings is lost for the three charge and polarization mea-
surements.

Next, we consider the CM energy
√
s = 500 GeV. For

ετ = 40%, εb = 20% and |P | = 90%, we find

Im (bZ − cZ) = 0 ± .0033
Im (bγ − cγ) = 0 ± .0037

Im b̃Z = 0 ± .0015
Im b̃γ = 0 ± .0017

,




1
−.10 1
0 0 1
0 0 −.10 1


 . (5.22)

Although the cross section at
√
s = 500 GeV is smaller

than the one at
√
s = 250 GeV, the errors on the couplings

are reduced because of the s/m2
Z factors multiplying the

above couplings. The three combinations Im aZ , Im (bZ +
cZ) and Im (bγ + cγ) cannot be measured even if the CM
energy is varied.

6 Conclusion

In the present paper, we have performed a systematic
study of the angular distributions of the process e+e− →
Hff̄ in order to assess the sensitivities to the seven general
HZV couplings by using the optimal-observable method
[10–13]. To that end, we have expanded the differential
cross section as a sum of the products of the eighteen
model-dependent coefficients c

(V,A)
i , which contain all the

dynamical information on the HZV couplings, and the
corresponding eighteen angular functions F

(V,A)
i , which

depend on the production and decay kinematics, the final-
state fermion flavour f , the tau polarization and the elec-
tron beam polarization P .

As for the real parts of the HZV couplings, one can
only measure six combinations at a given CM energy

√
s.

At
√
s = 250 GeV, we gain optimal errors of order 1×10−2

(1 × 10−1) for the HZZ (HZγ) couplings assuming L =
10 fb−1 and mH = 120 GeV. A tau helicity measurement
with 40% efficiency reduces the optimal errors on the HZγ
couplings to about 2/5 of those obtainable without such
a measurement. A bottom charge identification with 20%
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efficiency reduces these errors to about 2/7 of those with
unidentified bottom charge. An electron beam polariza-
tion of 90% reduces the optimal errors on the CP -even
(CP -odd) HZγ couplings to about 1/20 (1/6) of those
with unpolarized beams. The reduction of the errors on
the HZZ couplings is at most by 1/2. The sensitivities
to the HZV couplings depend on

√
s. The errors on the

real parts of the HZV couplings decrease by a factor of
about 1/2 to 1/10 when one increases

√
s from 250 GeV

to 500 GeV.
As for the imaginary parts of the HZV couplings,

we can only measure four combinations, as long as we
only keep terms linear in the couplings. Without the three
charge and polarization measurements, we achieve optimal
errors of order 1×10−2 for Im b̃γ , 5×10−2 for Im (bγ −cγ)
and Im b̃Z , and 3×10−1 for Im (bZ −cZ) with L = 10 fb−1

at
√
s = 250 GeV. The optimal errors on the HZZ cou-

plings are reduced by factors of about 2/5, 2/7 and 1/20
with the tau helicity measurement, the bottom charge
identification and the electron beam polarization, respec-
tively. The errors on the HZγ couplings are at most di-
minished by a factor of 1/3 with the three charge and
polarization measurements. When one increases

√
s from

250 GeV to 500 GeV, the errors decrease by a factor of
1/2 to 1/5.

In our analysis, we have considered the general HZZ
and HZγ interactions. We have neglected the contribution
from the dimension-five HZee operator,

1
mZ

∑
σ=±

gHZee
σ HZµēγµPσe, (6.1)

with P± = (1 ± γ5)/2, which contributes to the cross sec-
tion at the same order as the operators in the effective
Lagrangian (3.2). The simple and very general treatment
of the observables in Sect. 4 is no longer valid if the terms
in (6.1) are significant. The optimal constraints on the ef-
fective couplings can still be obtained by directly studying
the gHZee

σ dependences of the differential cross sections.
We believe, however, that our approach will be useful in
constraining theories that affect the HZV couplings more
significantly than the HZee couplings. The contributions
from the third-generation squarks in the MSSM [18] pro-
vide one an example.
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